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Abstract. We introduce a new linear transformation in order to construct isospectra poten- 
tials in the frame of  supersymmetric quantum mechanics. Under this transformation, the 
adjoint character of the ‘ladder operator’ i s  destroyed but with preservation of the energy 
spectrum leading to some interesting consequences such as the concept of pseudo-partner- 
ship of the two components. Connection with the Darboux Theorem as well as with some 
other recent methods of construction is analysed. 

Iso- or pseudoisospectral potentials, whose study is increasing in impetus because of 
their connections with many fields of quantum mechanics, are defined as members of 
families of potentials which may depend on a single or several parameters and which 
yield identical energy spectrum of the Schrodinger equations. They differ among 
themselves in the behaviour of their phase shift but generally conserve the same formal 
analytical representation. There is however, no unique approach to construct these 
families as has been remarked earlier (Luban and Pursey 1986) for instance in the 
inequivalence between the Darboux construction (1982) and the Abraham-Mose 
method (1981) which is based on the use of the Gel’fand-Levitan equation or on the 
Marchenko equation (Pursey 1986). 

Isospectral SUSY potentials which are directly related to supersymmetric quantum 
mechanics on the other hand are expected to present new problems because in simple 
isospectral potentials, the mathematical approach is based on a single (one-component) 
Schrodinger equation while in SUSY isospectral potentials, we have to deal simul- 
taneously with at least a couple of Schrodinger equations in the frame of the two- 
components theory. This may lead to new features which are not predicted in a 
one-component approach. 

In the present letter, we shall explore this second poipt of view, in relying on two 
types of transformation, the C and its modified form C transformations. It will be 
seen that the effect of the first kind of transformation is to preserve supersymmetry 
or, more precisely, to preserve the adjoint character of the ‘ladder operator’ but altering 
the energy spectrum. In the second one, however, this adjointness is lost but with 
preservation of the energy spectrum hence providing a .convenient point of view to 
approach the construction of families of isospectral potentials. 

The C fransformation. We use the same notations as previously in which 4,. & are 
the bosonic and fermionic components, dv/dx = U’, v ( x )  is the superpotential and the 
ladder operators A* are defined by A* = *d/dx+ U’ so that (Cao 1990a): 

A++, =m 42 A-4> = m 4, (1) 

t Permanent address: 01 Parvis du Breuil, 92160 Antony, France. 
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E being a member of the energy spectrum {E,) n : O ,  I ,  2 . .  . . Consider now a new 
representation (&, &2)  = 6 such that 

,$=e-'@ in which 
0 c-' 

c(x) being an arbitrary function of x. Under this transformation system (1) becomes 

in which the new ladder operator are defined by A'=*d/dx+E',  O(x) being the new 
superpotential in the (6 )  representation, V'= U'+ c'/c. 

Therefore, the adjoint character of the ladder operator is preserved (implying 
conservation of supersymmetry) but with alteration of the energy spectrum i.e. {E,,)  # 
{En;.  

The E transformation, Consider now a second representation 6 = (4, , &) defined by 

(4) 6 = e-i@ 

A+& = m $> A , & = m  6, ( 5 )  

= c(x)I, I being the unit matrix. Under (4) the system (1) can be written as: 

in which the new ladder operators are: 

which obviously are not adjoint, the indices a, p serving for labels but the energy 
spectrum is preserved. This also means that there are now two new superpotentials 

C' 
6; = "'f- ( i a )  

C 

( i b )  . c' '- c 
_-  

each of them generating two new adjoint ladder operators 

d d 
dx dx 

A;=*-+i$ A: = *-+ v̂ ; 

Isospecfral potenfials. Consider for instance system ( s a )  with 6'= U'+ c ' l c  ithe index 
01 ispmitted for simplicity), Form as usual th,e two Hamiltonians 2H+ = A-A+, 2 H -  = 
A'A-, with two corresponding potentials V,  = v*"* 6". We may subject C(X) to the 
conndition: 

Q + -  - v " 2 + u ^ " = u . 2 + " , , ,  (10) 
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c(x)  must be a solution of the following differential equation: 

c“+2u‘c’= 0. (11) 

We find: 

c(x) =e’( 11- e-Zy(x) dx+A2 (12) 

A , ,  A, being constants of integration. We shall discuss the following two cases 

Case 1. If {E,,] contains a non-degenerate zero-energy ground state ( E , = O )  which 
implies existence of a normalizable wavefunction (+,,,,=e-” so that the quantity 
d log c/dx can be writtten as 

in which A = A, e-’,’. In this sense we may conclude that the new superpotential 
G(x) = u(x)+log c(x) generates a one-parameter family of isospectral potentials corre- 
sponding to { E m ] .  The partner of V+ is 

The new eigenfunction related to the ground state is, A being a constant of normaliza- 
tion, 

A=e”’I2-. 

Therefore J,,, is defined only when A > 0 or A i -1. Symmetry is broken if A = 0 
(corresponding to the Pursey potential) and when A = - 1  (corresponding to the 
Abraham-Mose potential) because of deletion of the ground state making the spectra 
of Q+, V- completely degenerate. These conclusions agree exactly with those pointed 
out previously by Khare and Sukhatme (1988) who used a slightly different approach. 

Case 2. Note first that relation (15) results from the special structure of d ~ , , ~  ( & , , n =  
). However, if we assume now that the energy of the ground state is &>O, the 

state Eo being either non-degenerate or degenerate, the first case corresponding to an 
even superpotential ( u ( x ) = u ( - : J  the second one to an odd potential (u(x)= 
-U(-x)). For even potentials, I-. e-2”‘r’ dx  = p ;  choosing A > p, we see that the 
quantity log c(x) is always defined. On the other hand, as is assumed to be 
normalizable, the new ground-state wavefunction from (4) 

will also be normalizable. The normalization condition here depends on the analytical 
form of 

For odd potentials, the integral in (15) is divergent so that c(x) cannot be defined 
with this approach. 



L1158 Letter to the Editor 

Connection with the Darbour rheorem. We can also solve equation ( 1  1)  by setting4 

c(x) = y(x)  e-"I'' (18) 
where y(x)  is now an unknown function of x. With ( 1 1 )  it can be verified that y(x) 
must satisfy the equation: 

(19) 
which means that this function can be identified with 42.0 of system ( I ) .  If E,,> 0, 42,0 
is not normalizable but it is always possible to construct it such that it is nodeless for 
any finite x. For example if I)" is a particular solution of (19), the general form of &,,, 
is (Sukumar 1985a, b): 

- y"+ v+ y = 0 

A being a parameter. From ( 7 a )  and (18) we may conclude that the new superpotential 
B(X), 

t ( x )  =log @,,,(x)+constant (20) 

is definite everywhere and can be used to construct a second one-parameter family of 
isospectral potentials. In our representation (4,. 4, .), the corresponding Schrodinger 
equations are 

d2 

Equation ( 2 l a )  reflects the fact that the spectra corresponding to and 42 are 
identical ( E  ={Eo, E , ,  . . .I). Equation (21b)  means that for 4,. we have the same 
spectrum but with an additional zero-energy state with eigenfunction In  order to 
prove that is normalizable we note from (4) that &,o=(l /c(x))4, ,o .  From (18) 
and noting that +,,,,=A e-", we obtain 

Although c&,, is not normalizable, as it is assumed to be nodeless its inverse will be 
finite everywhere and is normalizable. Furthermore we may write from (9a) 

W denoting the usual symbol for +e Wronskian. 
Therefore, with the use of the C transformation and the relative simple reasoning 

above, we have just obtained an alternative proof of the Darboux theorem (1882) from 
the point of view of supersymmetric quantum mechanics. Incidentally, we may note 

t v ( x )  may nnw be add in the sense u(x) = -U(-x) (symmetry breaking) 
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the close similarity between the roles of the functions &(x), c(x) which do  have a 
precise physical interpretation and the functions u(x). -O(x) which are pure mathe- 
matical entities in Darboux's work. Note also that the result (20) remains valid 
regardless of the parity of the superpotential u(x). 

Example 1. We take the case u(x) =ix' (the oscillator problem) for which the particular 
solution $o is well known: 

m 

q/o = ex'12 a,x2* 
m = o  

where a, are positive coefficients making $o non-normalizable. The general form from 
62,0(A, x) is: 

62,0(A, X) = h( A + (Ir dGz dx) I 

(where A is a parameter) and is nodeless. Therefore with the above approaches we 
obtain the following types of superpotentials: 

(i) u(x) =fx'  
(ii) G(x) =fx2+log[e"l J:me-'2dx+A2] 

It can be recognized that ( i j  corresponds to the usuai harmonic osciiiator whiie 
the two other cases give rise to anharmonic oscillators; they have the same energy 
spectrum with an additional zero-energy state for the third one. 

Remark 1. Recall that the scattering matrices corresponding to the partner potentials 
are related by 

(iii) B(x) = lOg[6,,a(A, x)l.  

where &k)=ei6"', 6: = U'(X+*~O). If from (12) and (20) we have 

d 
lim -log c( x) = 0 
x-m d x  

then 6: = U:. This means that S^(k) = S(k)  and the phase shift will remain invariant, 
making these potentials strictly isospectral. 

Remark 2. In case (ii), if we set eAl = 2 / A ,  A, = 0, then the quantity d/dx log c(x) 
can be written as 

c' 2 
c J;; erfc(x) 
- 

where 

2 "  
erf c(x) =J;; jx e-'* dx. 

Formaiiy it has the same anaiyticai expression as the Gei'fand-ievitan kernei K(x, x) 
in the Abraham-Moses construction (1980) with addition of a ground state. Note that 
in spite of this formal similarity, these two approaches cannot he equivalent because 
K ( x ,  x )  is considered as an integral operator (the U transformation) while the quantity 
d log c(x)/dx here results from a linear transformation (the C transformation). 
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Remark 3. It is also interesting to point O u t  some other use of relation (18). For 
instance, if in state +2.0. we take the case v(x) = + 2 , 6 , ,  Eo being the first bound state, 
then equation (21a) can be written as 

H 6 i . s . ~ ~  = ~ d i , , ~ , ,  ZH = A+A-- Eo 

One may recognize here the basic idea leading to the well known technique of 
factorization (Andrianov et a/ 1984, Sukumar 1985a). 

Iteration. The new superpotential C(x) can in principle be used again to start another 
similar construction with the relation 

cib; = J ~ e-2"'n-'1 (x )  d x +  
-m 

in which ( p )  denotes iteration of order p ,  
P - l  

d '~-" (x)=u(x)+log  n C'"(X) . (23) I 
For instance, with two repeated operations we obtain, after some simple algebra: 

(24) ~ 'I 'C'2 '=  MC'l'+ 

in which 

M = - e A ~ 2 ' - A ~ "  1 = - e ~ ; i " - ~ i l l ,  
hl"' 

in comparing (24) with ( i i j  we see that with a redefinition of the parameters, the 
iteration does not bring anything new so that the one-parameter family found above 
is really unique. With the relation (20) we also find that with an addition followed by 
a deletion of the ground state, then 

( 2 5 )  

leading then to the same conclusion as above. For this case, however, it is also possible 
to initiate a mechanism of successive deletion and addition of higher excited states 
yielding an n-parameter family of isospectral potentials but with alteration of the phase 
shift, n being the number of excited states. This technique has already been developed 
by Keung el a1 (1989). 

Remarking that iteration is in fact related to repeated operations of the d transfor- 
mation ((C)") that is to say to a nonlinear transformation, another property which 
may be useful later can also be proved. In fact, after p transformations, the resulting 
superpotentials are, from (4): 

Gi2'  = log +2 ,0 (~" ' ,  x)+constant 

62; = u i p  log c(x) 

The corresponding potentials ?* pertaining to the index n are, with the above method: 

in which c(x) is given by a relation similar to (12). For p = I, it can be shown that the 
result in equation (21b) is recovered exactly. This remark therefore opens new 
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possibilities for constructing isospectral potentials. For example if we take a combina- 
tion of powers of C, 

~ = x a , ( i . ) ~  a, =coefficients 
n 

then the resulting superpotentials are simply: 

v^'=au'+b(logc(A,x)) 

in which 

a = x a ,  b = 1 pa,. 
P P 

.. 
Some orher consequences. It is instructive to digress on some other aspects of the C 
transformation which are not directly related to isospectral potentials but which may 
be useful in other problems. In the following we shall explore two simple cases as 
examples: 

Case 1. In  spite of the non-adjointness of the quantities 
two following second-order differential equations: 

we may always construct 

Ai&$, = 2 E $ ,  A i A j & = 2 E &  (27) 

or more explicitly: 

d d 1 d2c 
dx dx c d x  

F(x) = -2  - (log C) 7 

+ V - + F ( x )  4 , = 2 E $ ,  1 
1 + V + + F ( x )  J 2 = 2 E &  

If V, are assumed to be shape invariant, then the corresEonding Schrodinger equation 
for +,, +2 can be solved exactly. This means that the C transformation has enabled 
us to generate a class of non-quadratic second-order differential equations (c(x) being 
arbitrary) which is exactly solvable (because &, & are related to 4,.  +2 through (4)) 
but which are not SUSY partners. 

Note also that for each given eigenvalue ( E  = E,,) we have a couple (&", & " )  
which are related by 

and if the d transformation destroys the adjointness of the ladder operator A', it 
leaves its commutation invariant i.e. 

( 2 9 )  [A,, A:] = [ A - ,  At]  = -2u". 

Generalizing this idea, we may define :hc 'charge operator' & by 
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and construct the 'Hamiltonian' fi as 

where [,] and ( , I  represent the symbols of commutation and anticommutation 
operations. It can he verified that nilpotency ( ( Q L ) 2  = (&)'= 0) and commutativity 
with fi are conserved [&, fil = Ed,, fil = 0. 

For these reasons, we find it  convenient to denote the couple (&, &) a: pseudo-susy 
partners in order to make distinction with the couples (&, $2,r) which are 
genuine SUSY partners. 

Case 2. There is no loss of generality by considering the inverse of (4). i.e. let 

$ = C @  (32) 
because it corresponds merely to an inversion of the indices a e p .  We may set 
c(x) =/"(x). where m is a parameter a n d /  the unknown function. Consider now the 
coordinate transformation x +  r such that 

Noting 

d d d -=f2"- d 
dx d r  d x  d r  

and -(log c )  = m/*"- (log/) 

the two equations (27) can be written as: 

where the quantities E& result from the technique of 'adding terms' in order to 
have a conventional eigenvalue problem. It is interesting to note that if we take m = f ,  
these equations, after some minor modifications in the notations (for example if n 
labels a given state, we have €!!:, = €i2), etc), reduce exactly to the form given in 
Cooper er al (1989) where the method is referred to as the '/ operator transformation'. 
It has been used to show the non-preservation of supersymmetry and shape invariance, 
for example, a shape-invariant potential such as the generalized Posch-Teller or the 
oscillator potential are transformed into another type, the Natanzon potential which 
is not shape invariant but exactly solvableJCooper el al 1987). 

We may check the practical use of the C transformation on the simple example of 
the oscillator problem with the form already used in the above reference: 

d = f w x - b  

w,  b being constants. The component 4, is @/, = N,H,(&Z) 
N ,  being a normalization constant. 

(involving V- and E - )  in (33)  is given by 

I -  , 2141 .  

with f = x-Zb/w, 

If we choose for/(x) the form /= d r l d x  = x then the solution of the first equation 

$ -f2" 

Therefore = ~ " " N , Z " / ~ H , ( ~ Z )  with m = f ,  4, become identical to the result 
obtained by these authors. In  this sense, we may see the 'f operator transformation' 
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as a special case of the 6 transformation combined with appropriate coordinate 
transformation f: 

The 6 transformation approach is helpful in gaining a deeper insight on some 
interesting aspects of supersymmetric quantum mechanics. For example, the use of 
relation (7) lead us to a conclusion in agreement with other authors (Khare and 
Sukhatme 1988) while with relation (20), a close connection with the Darhoux theorem 
can be established. It serves to clarify a number of questions raised in previous papers 
(Cao 1990a, b) for instance concerning isospectral potentials generated by odd super- 
potential in which the difficulty resulting from the divergence of the integral in (7)  is 
avoided with the use of the second approach. Furthermore it  leads to a more generalized 
concept of the SUSY partnership which may be useful for further developments. It also 
shows that the 'operator transformation' pointed out by Cooper et of (1989) can be 
understood in a more general context and, therefore, is susceptible to playing the 
guiding role in the search for the possible existence of other types of exactly solvable 
potentials, for example, when we use a functional form of c =  c[g(x)l, g(x) being an 
auxiliary function discussed in Levai (1989). 
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